金 土 石 科 技
Golden Soil

Rock Tech

 010-51032186

 
13241132576
2658964502
关于RAMMS
RAMMS功能特点
RAMMS应用领域
RAMMS理论背景资料
RAMMS-AVALANCHE雪崩模拟
RAMMS-DEBRIS FLOW泥石流模拟
RAMMS-ROCKFALL落石模拟
RAMMS软件下载与试用

Image_003.png RAMMS

    rapid mass movement simulation

快速物质运动模拟

Two-dimensionaldynamics modeling

of rapid mass movements

快速物质运动的二维动力学建模

in 3Dalpine terrain

3D高山地形中

A valuable toolfor research and practice

研究和实践的宝贵工具

ramms主图.png

Simulationresult of the Salezer avalanche near Davos Dorf
Canton Grisons, Switzerland
. Imagery ©2010 swisstopo (JD100007)


Why RAMMS 为什么选择RAMMS

An accurate prediction of mass movementsrunout distances, flow velocities and impact pressures in naturalthree-dimensional terrain is the driving motivation behind the development ofimproved mass movements dynamics models.   

在自然三维地形中精确预测物质运动的跳动距离,流速和冲击压力是改进物质运动动力学模型发展的动力。

RAMMS was specially designed to provide geotechnical engineers with a tool thatcan be applied to analyze problems that cannot be solved with existingone-dimensional models (e.g. AVAL-1D).   

RAMMS是专门为岩土工程师提供的工具,可用于分析现有的一维模型无法解决的问题。

In the field of natural hazards, thereis a strong need for process models or tools where both the process andinteraction with proposed mitigation measures can be evaluated.   

在自然灾害领域,强烈需要能够评估过程以及与拟议的缓解措施之间的相互作用的过程模型或工具。

RAMMS is a reliable numerical simulationtool yielding runout distance, flow heights, flow velocities and impact pressureof dense flow snow avalanches, hillslope landslides and debris flows. It hasbeen developed by a team of experts at the WSL Institute for Snow and Avalanche Research SLF and the Swiss Federal Institute for Forest, Snow and LandscapeResearch WSL.    

RAMMS是一种可靠的数值模拟工具,可产生密集流雪崩,山坡滑坡和泥石流的跳动距离,流高,流速和冲击压力。RAMMS是由WSL雪和雪崩研究所SLF瑞士联邦森林雪和景观研究WSL的一个专家小组开发。

Measurements from the Swiss real scaletest sites in Valléede la Sionne (snow avalanches )and Illgraben (debrisflows) and data from numerous datasets of historic avalanche and debris flowevents in Switzerland were used to develop and calibrate the model.

来自瑞士的真正规模试验地点的测量河谷德拉雄恩(雪崩)和Illgraben(泥石流)在瑞士历史悠久的雪崩和泥石流事件的大量数据集和数据用于开发和校准模型。  

Mitigation engineers have applied RAMMSto a wide range of case studies and have established the useability of RAMMSfor practical roblems.   Practitioners in Switzerland are now using RAMMSin consulting problems involving snow avalanches, hillslope landslides and debris flows.   

防灾减灾工程师已将RAMMS应用于各种案例研究,并确定了RAMMS在实际问题中的可用性。瑞士的从业人员现在正在使用RAMMS来咨询涉及雪崩,山坡滑坡和泥石流以及落石危害的问题

why图.jpg


瓦莱州Sion附近瑞士瓦朗谢拉西昂(Valléede la Sionne)瑞士雪崩测试场的雪崩模拟结果地形图


RAMMS features

RAMMS功能特点

Advanced 3D visualization interface for digital elevationmodels, aerial imagery, topographic maps, simulation results and additionalgeoreferenced datasets. Topographic map and aerial imagery © 2010 swisstopo(JD100007)

先进的3D可视化界面,可用于数字高程模型,航空影像,地形图,模拟结果和其他地理参考数据集。地形图和航空影像

2d.png


3d.png

                                            2D topographic map地形图

3D terrain地形

3dap.png

3daerial.png

                                          3D topographic map地形图

3D aerial imagery航空影像


   GIS tools such as slope angle, curvature, contour andfriction parameter calculation.GIS工具,例如坡度角,曲率,轮廓和摩擦参数计算。

slope.png

friction.png

                                          Slope angle倾斜角度

Friction parameter ξ摩擦参数ξ

     Manual release area and forest editing tools. Aerialimagery © 2010 swisstopo (JD100007)手动自由发布区域和森林编辑工具。航拍图像


forest.png

release.png

                                       Forest cover森林覆盖


Release areas发布区域


     Calculation and animation of runout distance, flowheight, velocity and impact pressure. Aerial imagery © 2010 swisstopo(JD100007) 跳动距离,流高,速度和冲击压力的计算和动画处理。

pressure.png

velocity.png

Maximum pressure最大压力

Maximum velocity最大速度


    Export the results to Google Earth, ArcGIS and othertools. 将结果导出到Google EarthArcGIS和其他工具。

google.png

导出结果的Google地球可视化

Applications

rockzagl.jpg

Main RAMMS - applicationsare:

·        Hazard mapping and zoning

·        Simulation of disastrous events   

·        Safety assessment for buildings and trafficroutes   

·        Planning and evaluating protection measures

·        Avalanche and debris flow dynamics research


应用领域

rockfzaifz.png

主要RAMMS-应用领域包括:

·        危险区划分和分区

·        模拟灾难事件   

·        建筑物和交通路线的安全评估   

·        规划和评估保护措施

·        雪崩和泥石流动力学研究

·        落石运动模拟计算





nslt.jpg

nsl.jpg

BackgroundInformation

Questions:

·        What friction models are used in RAMMS?

·        When and why does the Voellmy model workwell?

·        Why use a hydrograph for debris flowmodelling?

·        What numerical solution technique doesRAMMS use?

·        How long does it take to perform asimulation?

问题:

·        RAMMS中使用什么摩擦模型?

·        Voellmy模型何时以及为什么运行良好?

·        为什么使用水位图进行泥石流模拟?

·        RAMMS使用哪种数值求解技术?

·        执行仿真需要多长时间?


·        What friction models are used in RAMMS?        RAMMS中使用什么摩擦模型?


RAMMS employs aVoellmy-fluid friction model. This model divides the frictional resistance intotwo parts: a dry-Coulomb type friction (coefficient μ ) that scales with the normalstress and a velocity squared drag (coefficient ξ) . The frictional resistance S (Pa) isthenRAMMS采用Voellmy流体摩擦模型。该模型将摩擦阻力分为两部分:与正应力成比例的干库仑型摩擦力(系数 μ)和速度平方阻力(系数 ξ)。摩擦阻力SPa)为

公式1.png

where ρ is the flow density, ggravitational acceleration, φ the slope angle, H the flow height and U the flowvelocity. This model has found wide application in the simulation of massmovements, especially snow avalanches. The Voellmy model has been in usein Switzerland for a long time and a set of calibrated parameters isavailable.其中 ρ是流密度,g是重力加速度, φ是倾斜角,H是流高,U是流速。该模型已广泛应用于模拟群众运动,尤其是雪崩。Voellmy模型已用于瑞士 很长一段时间,并提供了一组校准参数。

Cohesion   凝聚

Since Version 1.6.20 the basic Voellmyequation has been modified to include cohesion:1.6.20版开始,基本的Voellmy方程已修改为包括内聚力:

公式2.png

where C is the cohesionof the flowing material. Unlike a standard Mohr-Coulomb type relation thisformula ensures that S→0 when both N→0 and U→0.It increases the shear stress and therefore causes the avalanche or debrisflow to stop earlier, depending on the value of C. 其中C是流动材料的内聚力。与标准的Mohr-Coulomb类型关系不同,此公式可确保当N → 0U → 0 都为S →0。这会增加剪切应力,从而导致雪崩或碎屑流更早地停止,具体取决于C的值。
This formula has been established using chute experiments with flowing snow (Platzer et al.,
2007a and Platzer et al., 2007b)and real scale experiments with debris flows in Illgraben (VS). Snow hasdifferent cohesive properties depending on snow temperature. Wet snowavalanches have higher cohesion values; dry snow avalanches have lowercohesion values.该公式是通过使用滑雪进行滑槽实验(Platzer等人,2007aPlatzer等人,2007b)以及使用艾尔格拉本(VS)中的泥石流进行的实际规模实验建立的。雪有不同粘结性取决于雪温。湿雪崩具有更高的内聚力值;干雪雪崩的凝聚力值较低。

Cohesion can help reduce spurious numerical diffusion in runout zones,providing a clearer delineation of the deposition zone.内聚力可以帮助减少在跳动区中的虚假数值扩散,从而使沉积区的轮廓更加清晰。


Cohesion values(unit Pascal) may be entered in the Mu/Xi tab of the RunSimulation window. Recommended values may be found in the following:内聚值(单位帕斯卡)可以在运行模拟窗口的“ Mu / Xi”选项卡中输入。推荐值可在以下找到:

·        Avalanche, dry snow: 0 - 100 Pa

·        Avalanche, wet snow: 100 - 300 Pa

·        Debris Flow: 0 - 2000 Pa

Please use cohesion values with care!

·        雪崩,干雪:0-100 Pa

·        雪崩,湿雪:100-300 Pa

·        泥石流:0-2000 Pa

请谨慎使用内聚值!


Curvature   曲率

Since Version 1.6.20, the normalforce N now includes centrifugal forces arising from theterrain curvature. We use the method proposed by Fischer et al. (2012) which was specifically developedfor RAMMS. The centrifugal acceleration ƒ is both a function of the avalanchevelocity and terrain curvature. The acceleration is calculated according to从版本1.6.20开始,法向力N现在包括由地形曲率产生的离心力。我们使用Fischer等人提出的方法2012这是专为RAMMS开发的。离心加速度ƒ是雪崩速度和地形曲率的函数。加速度是根据

公式3.pngwhere μ is the vector μ =u,v), consisting of the avalanche velocity in the x- and y-directions. Thematrix K describes the track curvature in all directions,including the track “twist”. The centrifugal force is then   其中μ是向量μ=uv),由xy方向上的雪崩速度组成。矩阵K描述了在所有方向上的轨迹曲率,包括轨迹扭曲。然后离心力是公式4.png

which is added to the normal force N.Typically this increases the friction, causing the avalanche to slow down intortuous and twisted flow paths. It can change the location of the depositiononce the flow leaves the gully. Curvature may be activated/deactivated via themenu ‘Help → Advanced… → Curvature’.它被加到法向力N。通常,这会增加摩擦力,从而导致雪崩在曲折扭曲的流路中减速。一旦水流离开沟渠,它就可以改变沉积的位置。曲率可以通过菜单帮助高级…   →曲率来激活/禁用   

·        When and why   does the Voellmy model workwell?   When should you be careful using the Voellmy model?        Voellmy模型何时以及为什么运行良好?什么时候应该谨慎使用Voellmy模型?

Avalanches 雪崩:

The Voellmymodel – coupled with the calibrated parameters – can be used to (1) predict therunout distance and (2) predict the maximum flow velocity of extreme, largesnow avalanches. This is one of the important research results from the Valléede la Sionne test site.   Voellmy模型以及已校准的参数可用于(1)预测跳动距离和(2)预测极端大雪崩的最大流速。这是来自西蒙谷(Valléede la Sionne)测试场的重要研究成果之一。

The Voellmyparameters that we recommend describe the front of a dry-snow avalanche.Because the front defines the runout distance and maximum velocity the Voellmymodel will work.我们建议的Voellmy参数描述干雪崩的前缘。因为前部定义了跳动距离和最大速度,所以Voellmy模型将起作用。

However, theVoellmy model will not describe the avalanche flow behind the front, at thetail of the avalanche. Here, measurements show an increase in the friction (arapid decrease in speed). This effect causes avalanches to elongate andeventually deposit mass.   Therefore, the Voellmy model will not predict the deposition behaviour. The Voellmy model has difficulties to predictthe runout of small avalanches, which sometimes begin immediately to deposit or“to starve”. Of course, small avalanches can be modelled using higher μ and ξ values, but this is a very ad-hocapproach. 但是,Voellmy模型将无法描述雪崩前部,雪崩尾部后的雪崩流。在此,测量结果显示出摩擦力的增加(速度的迅速降低)。这种作用导致雪崩拉长,并最终沉积物质。因此,Voellmy模型将无法预测沉积行为。Voellmy模型很难预测小的雪崩的跳动,这些雪崩有时会立即开始沉积或饿死。当然,可以使用较高的 μ ξ值来模拟小雪崩,但这是一种非常特殊的方法。

Debris flow 泥石流:

The"best" constitutive model for debris flows is still a very openquestion in the scientific community. We recommend using the Voellmy modeluntil a better model is found. Voellmy basically has only two parameters andafter some calibration a useful solution can usually be found. With Voellmy onecan control the flow velocity (parameter xi) and runout distance (mu).泥石流的最佳本构模型在科学界仍然是一个非常开放的问题。我们建议使用Voellmy模型,直到找到更好的模型为止。Voellmy基本上只有两个参数,经过一些校准,通常可以找到一个有用的解决方案。使用Voellmy可以控制流速(参数xi)和跳动距离(μ)。


One reason Voellmy is useful is that itonly requires two parameters to calibrate. The turbulent term dominates thefrictional behavior when the flow is moving rapidly and the Coulomb term isdominant when the flow is moving slowly, allowing the model to be approximatelycalibrated to observations of flow velocity and the stopping location of theflow front.   Voellmy有用的原因之一是它仅需要两个参数即可进行校准。当流体快速移动时,湍流项占主导地位,而当流体缓慢移动时,库仑项占主导地位,这使得该模型可以根据流速和流动前沿的停止位置进行近似校准。


Finding the"right" debris flow model is more difficult than finding the"right" snow avalanche model because debris flows are two componentsystems (fluid, solid). Much of the behaviour of a debris flow -- including thestopping process -- involves the interaction between the fluid-solidcomponents. Thus, without a two component model, it will be unlikely that weare able to model all aspects of debris flows. The Voellmy model mixes the twocomponents and therefore models the debris flow when the components volumes areconstant and well mixed. This assumes, of course, that the relative portions ofsolid and fluid remain the same, from head to tail of the event. This is hardlytrue.   与找到正确的雪崩模型相比,找到正确的泥石流模型更加困难,因为碎片流是两个组成系统(流体,固体)。泥石流的许多行为-包括停止过程-都涉及流固成分之间的相互作用。因此,如果没有两部分模型,我们就不可能对泥石流的各个方面进行建模。Voellmy模型将两种成分混合在一起,因此当成分体积恒定且混合均匀时,对泥石流进行建模。当然,这假定从事件的头到尾,固体和流体的相对部分保持相同。事实并非如此。



·        Why use a hydrograph for debris flow modelling? 为什么使用水位图进行泥石流模拟?

There a severalgood reasons.

Firstly, hazardmitigation experts are often interested in the flow behaviour only near the fan.Calculating the movement of the debris flow in the torrent is a time consumingand often useless task. Therefore using a hydrograph can often cut calculationtimes dramatically.

Another reasonis that it is impossible to describe the initial conditions of debris flows asa "block release". There are cases where block release is a goodapproximation of reality (e.g. dam breaks), but, in general, it does notaccurately reflect the starting conditions of flows from intense precipitation.

有几个很好的理由。

首先,减轻危害的专家通常只对风扇附近的流动行为感兴趣。计算山洪中泥石流的运动是一项耗时且通常无用的工作。因此,使用水位图通常可以大大减少计算时间。

另一个原因是不可能将泥石流的初始条件描述为块释放。在某些情况下,障碍物的释放非常接近实际情况(例如,溃坝),但总的来说,它不能准确反映强烈降雨带来的水流的起始条件。



·        What numerical solution technique does RAMMS use?    RAMMS使用哪种数值求解技术?


In all RAMMSversions up to Version 1.5.01, an ENO (Essentially Non-Oscillatory) scheme wasused to numerically solve the governing differential equations (Christen etal., 2010). However, the numerical solution was implemented on strictlyorthogonal grids. This improves computational speed, but introduces numericalinstabilities especially in steep terrain. The new Version 1.6.20 uses the samesecond order ENO scheme, but now on general quadrilateral grid. This new schemeimproves numerical stability, but slows the computational speed somewhat. Theintroduction of this stable ENO scheme allows us to use lower H_cutoff valuesminimizing mass loss during calculations. The standard value of H_cutoff is0.000001 m.

1.5.01版之前的所有RAMMS版本中,都使用ENO(本质上非振荡)方案对控制微分方程进行数值求解(Christen等,2010)。但是,数值解决方案是在严格正交的网格上实现的。这样可以提高计算速度,但会引入数值不稳定性,尤其是在陡峭的地形中。新的1.6.20版使用相同的二阶ENO方案,但现在在通用的四边形网格上。此新方案提高了数值稳定性,但会稍微降低计算速度。这种稳定的ENO方案的引入使我们可以使用较低的H_cutoff值,从而将计算过程中的质量损失降至最低。H_cutoff的标准值为0.000001 m


·        How long does it take to perform a simulation?     执行模拟仿真需要多长时间?


The timerequired to simulate an avalanche or a debris flow is a function of the finitevolume grid resolution and the size of the calculation domain. Typically we use5m resolutions and the simulations require around 10 minutes. We usuallyperform the initial simulations at 10 m resolution and therefore we haveresults in 1 or 2 minutes. When we have a solution that we like we might take alook at the problem at 2m resolution.

模拟雪崩或泥石流所需的时间是有限体积网格分辨率和计算域大小的函数。通常,我们使用5m的分辨率,而模拟则需要大约10分钟。我们通常以10 m的分辨率执行初始模拟,因此在12分钟内即可得到结果。当我们有自己喜欢的解决方案时,我们可以看一下2m分辨率下的问题。



雪崩.png

RAMMS-avalanche雪崩动态模拟软件

RAMMS::AVALANCHE模型用来模拟复杂地形中流动的雪崩。该模型在瑞士被广泛用于雪崩危险研究。RAMMS-AVALANCHE模型结合了最先进的数字解决方案和有帮助的输入特性以及友好的可视化工具,许多输入输出特征都是经过优化的,使用户能够轻松修改危险场景并控制模拟结果。该程序的核心是一种有效的二阶数值解,即深度平均雪崩动力学方程。在三维数字地形模型中,计算了雪崩流速和速度。使用GIS类型绘图功能可以轻松地指定单个或多个发布区域。用户可以获得模拟的有用的概览信息,包括发布区域(平均斜率、总容量)、流量行为(最大流量和高度)和停止行为(质量流量)的重要信息。地图和遥感图像可以叠加在地形模型上,以帮助确定输入条件,并根据已知事件校准模型。RAMMS::AVALANCHE模型现在已经在全球70多个地方使用,该软件已经成功应用于高山地区,如阿尔卑斯山、喜马拉雅山、安第斯山脉、落基山脉、塔塔雷和其他地区。

·        Release date: March 1st 2010.

·        The RAMMS module AVALANCHE was developed to simulateflowing snow avalanches in complex terrain. The module is widely used inSwitzerland for avalanche hazard studies.

·        The RAMMS::AVALANCHE module combines state-of-the-artnumerical solution methods with helpful input features and user-friendlyvisualization tools.   Many of the input and output features have beenoptimized to allow engineers in practice to easily modify hazard scenarios andcontrol simulation results.

·        The core of the program is an efficient second-ordernumerical solution of the depth-averaged avalanche dynamics equations.Avalanche flow heights and velocities are calculated on three-dimensionaldigital terrain models. Single or multiple release areas are easily specifiedusing GIS type drawing features. Users are provided with useful overviewinformation of simulations, including all-important information of the releasearea (mean slope, total volume), flow behaviour (max flow velocities andheights) and stopping behaviour (mass flux).   Maps and remote sensingimagery can be superimposed on the terrain models to aid the specification ofinput conditions and calibrate the model with known events.

·        The model still relies on the two-parameter Voellmy modelwidely used in Swiss snow engineering practice. To calibrate the RAMMSVoellmy-model, we used data from our real scale avalanche test site in Vallée de la Sionne,VS, Switzerland. Special user features have been introduced into the model toaccount for variable surface roughness, vegetation and flow in forests. Swissguideline suggestions for friction parameters (based on extensive modelcalibration) are also available for practical users.

·        The development of the RAMMS::AVALANCHE module started in2005 and is based on experience with the one-dimensional simulation tool AVAL-1D. (Two-dimensional terrain profiles with known flow width are used to modelthe avalanche track.)   RAMMS::AVALANCHE is now in use in over 70 locationsworldwide and the software has been successfully applied in mountain regionssuch as the Alps, Himalayas, Andes, Rocky Mountains, Tatras and others.

·        Future Developments

·        Avalanche dynamics research in Switzerland is nowundergoing massive improvements, driven by recent theoretical and experimentalresearch results. The RAMMS::AVALANCHE model is now being updated to includemany of these results and offer advanced model functions to specialized users –located primarily at other research organizations.

·        One of the primary results is in the inclusion of thefluctuation energy of the snow granules – which greatly effects flow friction,producing flow regime transitions (solid-like tails and dilute flow fronts). Avariable density avalanche model is now being tested that should help reproduceavalanche impact pressures more accurately.   Since the production offluctuation energy is mass dependent, entrainment processes will be included inmodel updates. Many countries in the world have wet snow avalanche problems anda special wet snow avalanche model is now under development. This model willaccount for high snow temperatures and predict the free water content in theflow providing the necessary state variables to model snow gliding and leveeformation.

·        Users are also interested in modeling small, frequentavalanches. In this area we are working on the specification of initialconditions (snowpack structure and collapse) as well as defining useabledigital terrain models.Considerable calibration of small avalanche events isunderway.

·        Finally, the physical boundary conditions for air-blowout from the granular core are being formulated. This will allow the couplingof RAMMS::AVALANCHE to a new powder snow avalanche code which can be used tomodel full mixed flowing/powder avalanches in three-dimensional terrain in thenear future.

·        The RAMMS team welcomes future research collaborationswith other organizations.

·        For further information please consult the RAMMSAVALANCHE user Manual

发布日期:201031

RAMMS模块AVALANCHE被开发为模拟复杂地形中流动的雪崩。该模块在瑞士广泛用于雪崩危害研究。

RAMMS ::AVALANCHE模块将最新的数值求解方法与有用的输入功能和用户友好的可视化工具结合在一起。许多输入和输出功能已经过优化,可以使工程师在实践中轻松修改危险情况和控制仿真结果。

该程序的核心是深度平均雪崩动力学方程的有效二阶数值解。在三维数字地形模型上计算雪崩流的高度和速度。使用GIS类型绘图功能可以轻松指定单个或多个发布区域。为用户提供了有用的模拟概述信息,包括释放区域(平均斜率,总体积),流动行为(最大流动速度和高度)和停止行为(质量通量)的所有重要信息。可以将地图和遥感影像叠加在地形模型上,以帮助指定输入条件并用已知事件校准模型。

该模型仍然依赖于瑞士雪地工程实践中广泛使用的两参数Voellmy模型。为了校准RAMMS Voellmy模型,我们使用了位于瑞士VSValléede la Sionne真实规模雪崩测试站点的数据。该模型引入了特殊的用户功能,以解决森林中不同的表面粗糙度,植被和流量。对于摩擦参数的瑞士指南建议(基于广泛的模型校准)也可供实际用户使用。

RAMMS ::AVALANCHE模块的开发始于2005年,该开发基于一维仿真工具AVAL-1D的经验。(使用已知流量宽度的二维地形剖面来模拟雪崩轨迹。)RAMMS- AVALANCHE现在在全球70多个位置中使用,该软件已成功应用于阿尔卑斯山,喜马拉雅山,安第斯山脉等山区,洛矶山脉,塔特拉山等。

未来发展

在最近的理论和实验研究结果的推动下,瑞士的雪崩动力学研究正在经历巨大的改进。RAMMS ::AVALANCHE模型现在正在更新,以包括许多这些结果,并为主要位于其他研究组织的专业用户提供高级模型功能。

主要结果之一是包含了雪粒的波动能量,这极大地影响了流动摩擦,产生了流动状态转换(固体尾部和稀薄的流动前沿)。现在正在测试可变密度雪崩模型,该模型应该有助于更准确地再现雪崩冲击压力。由于波动能量的产生取决于质量,因此模型更新中将包含夹带过程。世界上许多国家存在湿雪崩问题,目前正在开发一种特殊的湿雪崩模型。该模型将考虑到较高的降雪温度,并预测流中的自由水含量,从而提供必要的状态变量来模拟滑行和堤防形成。

用户还对建模频繁的小雪崩感兴趣。在这一领域中,我们正在研究初始条件(雪堆结构和塌陷)的规范,以及定义可用的数字地形模型。正在进行小雪崩事件的相当大的标定。

最后,正在制定从颗粒核中吹出空气的物理边界条件。这将允许将RAMMS- AVALANCHE耦合到新的粉雪雪崩代码,该代码可用于在不久的将来对三维地形中的全混合流动/粉末雪崩进行建模。

RAMMS团队欢迎与其他组织的未来研究合作。有关更多信息,请查阅RAMMS AVALANCHE 用户手册


·        Case studies实例探究

·        1) Vallée de la Sionne, VS, Switzerland 瑞士VS西蒙河谷(Valléede la Sionne

·        In our real scale test site we have accurate data fromdifferent dry and wet snow avalanches events from 1999 until today. This givesus the opportunity to test and calibrate the models. We can compare measuredspeed, run out distances and pressure directly with model results. Thepresented dry snow avalanche occured in March 2006.

在我们的实际规模测试站点中,我们提供了从1999年至今的不同干雪和湿雪崩事件的准确数据。这使我们有机会测试和校准模型。我们可以直接将测得的速度,偏心距离和压力与模型结果进行比较。提出的干雪雪崩发生在20063月。


1.png

2.png

3.gif

4.gif

·        2) Dorfberg, GR, Switzerland   瑞士GRDorfberg

·        The popular freeride slopes of the Dorfberg are locatedright next to the SLF building in Davos. In March 2008 a large wet snowavalanche released close to the top of Dorfberg (2536m a.s.l), ran through thenarrow gully Salezer Tobel and ran out on the gentle slope at the bottom nextto the lake Davos.

Dorfberg受欢迎的自由滑坡位于达沃斯SLF大楼的旁边。20083月,靠近多尔夫贝格(2536m asl)顶部释放了一个大的湿雪崩,穿过狭窄的萨勒兹托贝尔(Salzer Tobel)沟壑,然后在达沃斯湖底部的缓坡上奔跑。


5.png

6.png

7.gif

8.gif


泥石流.png

RAMMS::DEBRIS FLOW 泥石流动态模拟软件

RAMMS::DEBRIS FLOW 模型被开发用来模拟复杂地形中泥石流的流动。该模型用于瑞士和世界各地的泥石流危险分析,并帮助设计缓解措施。它结合了最先进的数字解决方案和有用的输入特性和用户友好的可视化工具。许多输入和输出特性已经得到了优化,使工程师和地球科学家能够定义事件场景,评估模拟结果,并预测拟议的结构缓解措施对泥石流的影响。该程序的核心是颗粒流的深度平均运动方程(浅水方程)的一个有效的二阶数值解。在三维数字地形模型上计算了流的高度和速度。地图和遥感图像可以叠加在地形模型上,以帮助规范输入条件,并促进模型与历史事件数据的校准。

Release date:September 7th 2011.

TheRAMMS::DEBRIS FLOW module was developed to simulate the runout of muddy anddebris-laden flows in complex terrain. The module is used in Switzerland andworldwide for debris flow hazard analysis and to aid in the design mitigationmeasures. It combines state-of-the-art numerical solution methods with helpfulinput features and user-friendly visualization tools.   Many of the inputand output features have been optimized to allow engineers and geoscientists todefine event scenarios, evaluate simulation results, and predict the influenceof proposed structural mitigation measures on the runout of debris flows.

开发了RAMMS :: DEBRIS FLOW模块以模拟复杂地形中泥泞和充满碎屑的流的跳动。该模块在瑞士和世界范围内用于泥石流危害分析并有助于设计缓解措施。它结合了最新的数值求解方法,有用的输入功能和用户友好的可视化工具。许多输入和输出功能已经过优化,可以使工程师和地球科学家定义事件场景,评估模拟结果并预测拟议的结构性缓解措施对泥石流跳动的影响。

The core of theprogram is an efficient second-order numerical solution of the depth-averagedequations of motion (the shallow water equations) for granular flows. Flow heights and velocities are calculated on three-dimensional digital terrainmodels.   Single or multiple block-release (initiation) areas are easilyspecified using GIS-type drawing tools; alternatively an input hydrograph canbe used to specify the discharge as a function of time.   Users areprovided with useful overview information related to simulations, such asrelease area (mean slope, total volume), flow behavior (max. flow velocitiesand heights) and stopping behaviour (mass flux).   Maps and remote-sensingimagery can be superimposed on the terrain models to aid the specification ofinput conditions and facilitate the calibration of the model with historicalevent data.

该程序的核心是对颗粒流动的深度平均运动方程(浅水方程)进行有效的二阶数值解。流动高度和速度是在三维数字地形模型上计算的。使用GIS类型的绘图工具可以轻松地指定单个或多个块释放(初始化)区域。或者,可以使用输入水位图来指定流量随时间的变化。向用户提供了与模拟有关的有用的概述信息,例如释放面积(平均斜率,总体积),流动行为(最大流动速度和高度)和停止行为(质量通量)。可以将地图和遥感图像叠加在地形模型上,以帮助指定输入条件并促进使用历史事件数据对模型进行校准。

The numericalmodel uses the two-parameter Voellmy relation to describe the frictionalbehaviour of the flowing debris.   This relation has been shown by othersto be useful for modeling the runout of debris flows and other flowinglandslides.   To calibrate the RAMMS Voellmy model, users generallysimulate well-documented historical events and determine the best-fit parametersets which can be used in subsequent analyses.   Additional featuresinclude the ability to export the results to GIS as well as the ability tomodify the topography to include deposits from a previously-modelled surge orto include constructional migitation measures (e.g. retention or deflectiondams), thereby allowing users to evaluate the influence of previous flows ormitigation measures, respectively, on the runout of future debris flows.

数值模型使用两参数Voellmy关系描述流动碎屑的摩擦行为。其他人已经证明,这种关系对于模拟泥石流和其他流动滑坡的跳动是有用的。为了校准RAMMS Voellmy模型,用户通常会模拟有据可查的历史事件,并确定可用于后续分析的最佳拟合参数集。其他功能包括将结果导出到GIS的能力,以及修改地形的能力以包括先前建模的涌浪的沉积物或包括构造移民措施(例如,挡水坝或偏转坝)的功能,从而使用户能够评估影响对未来泥石流的余量分别采取了先前的流量或缓解措施。

Hydrograph orBlock Release (landslide) initiation

RAMMS::DEBRISFLOW provides the option to use an input hydrograph or a block release to startthe model.   For large channelized debris flows, users typically start themodel by specifying an input hydrograph (flow discharge as a function of time)at a user-specified location.   This is expecially useful when informationis available on the flow close to the area of interest, for example fromobservations made at the apex of a debris flow fan upslope of a populatedarea.

RAMMS :: DEBRISFLOW提供了使用输入水位图或块释放来启动模型的选项。对于较大的通道化泥石流,用户通常通过在用户指定的位置指定输入水位图(流量作为时间的函数)来启动模型。当可获得有关感兴趣区域附近的流的信息时,例如从人口稠密区域的泥石流风扇上升坡顶点进行观察时,这特别有用。

For simulationsof unchannelized hillslope debris flows or shallow landslides (or small-volumechannelized debris flows, where appropriate) there is the option to use asingle or multiple block release. In this case, all the debris material isreleased at once as a block defined by aerial extent, thickness and thefriction parameters of the flow. The block release input differs from thehydrograph input in that the entire flow mass enters the computational domainat the first time step.

对于模拟非通道化的山坡泥石流或浅层滑坡(或小流量的通道化的泥石流,如果适用),可以选择使用单个或多个块体释放。在这种情况下,所有碎片材料立即释放,这是由气流范围,厚度和流的摩擦参数定义的一个障碍。块释放输入与水位图输入的不同之处在于,整个流量在第一个时间步入计算域。


9.gif

Performingsimulations using input hydrographs has the following advantages:

使用输入水位图执行模拟具有以下优点:

·        More realistic input conditions for large debris flows. Debrisflow discharge at a given location can be estimated using historical data (ifavailable) or derived using empirical relations. This procedure is, in manycases, more realistic than using a block release because the shape of the inputhydrograph can be adjusted to match flow observations.

·        大泥石流更现实的输入条件。可以使用历史数据(如果有)估算给定位置的泥石流排放量,也可以使用经验关系推导出。在许多情况下,此过程比使用块释放更为实际,因为可以调整输入水位图的形状以匹配流量观测。


·        Faster simulations - The simulation time can bereduced significantly, because the calculation domain can be made smaller toinclude only the geographical area of interest (e.g. the active part of adebris flow fan rather than the entire catchment).

·        更快的仿真 - 仿真时间可以大大减少,因为可以使计算域更小,使其仅包含感兴趣的地理区域(例如,泥石流风扇的活动部分,而不是整个集水区)。


   RAMMS_debris flow 主要用于模拟复杂地形中碎屑流和泥石流的滑动,其核心是颗粒流动平均深度运动方程的有效二阶数值解,可在三维数字地形模型上计算流量高度和速度。软件的后处理功能非常强大,可以将模拟相关的所有信息以可视化方式展示给用户。


    Voellmy摩擦模型

  • 数值模型使用双参数Voellmy摩擦模型来描述流动碎屑之间的摩擦行为

  • 根据研究表明,Voellmy摩擦模型可以准确用于模拟碎屑流、泥石流和其他滑坡的滑动

  • 为了校准RAMMS软件的Voellmy模型,通常需要参考记录良好的历史事件,并确定可以在后续分析中使用最佳的拟合参数集

  释放方式

  • RAMMS碎屑流中,提供两种释放方式:定义输入水力图或定义块体释放区

  • 对于大型通道化的碎屑流,在特定位置指定输入水力图;对于非通道化山坡碎屑流或浅层滑坡(或适当的小体积渠道化碎石流),定义单个或多个块体释放区

  • 块体释放区和水力图输入的不同之处在于,整个流量在第一个时间步长进入计算域

  • 采用输入水力图的方式进行模拟具有以下优点:可以实现较大规模的碎屑流输入条件:给定位置的碎屑流流动可以使用历史数据(如果可用)或使用经验关系导出

  • 模拟更高效,可以显著减少模拟时间,因为计算域可以更小,仅包括感兴趣的地理区域(例如,碎屑流的活动部分,而不是整个流域)

 输出格式

  • Ramms软件具有很强大的可视化效果,也支持多种结果输出的格式,主要包括ASCII 网格、ArcGis shape文件、图形文件 (.png, .jpg, .tif etc.)、动画文件(.gif)、谷歌地球格式(.kml)、文本文件(剖面, , 项目日志)


For furtherinformation please consult the RAMMS DEBRIS FLOW user Manual


ROCKFALL.png

RAMMS::ROCKFALL 落石动态模拟软件


RAMMS::ROCKFALL模型考虑到真实的岩石形状,计算出它们在三维空间中的运行轨迹,包括跳跃高度、速度、旋转速度、总动能和接触冲击力。将真正的岩石形状引入到RAMMS::ROCKFALL模型中,可以更好地包含由不同地质背景产生的岩石形状和大小的自然变化。利用这一点,可更接近于模拟岩石坠落的运行行为的真实性质,整合岩石形状和现场特定岩石坠落危险的释放运动学特征。

Release date: April17th 2015.

Data collatedfrom field studies and experimentation is providing the essential calibrationdata to test and validate the new RAMMS rockfall (see Figure below) model whichwe are developing in collaboration with the Centre of Mechanics, Department ofMechanical & Process Engineering ETH Zürich. The RAMMS:rockfall modelemploys rigid body mechanics which permits an explicit description of arbitrarythree dimensional polyhedral bodies, including natural rock-shapes (see Figurebelow). Introducing real rock-shapes into rockfall modelling enables a betterinclusion of the natural variability of rock-shapes and sizes generated fromdiffering geological settings. With this we come closer to modelling the truenature of rockfall runout behaviour, integrating rock-shape and the releasekinematics characteristic of site specific rockfall hazards.

发布日期:2015417

实地研究和实验收集的数据为我们提供了必要的校准数据,以测试和验证新的RAMMS落石模型(请参见下图),该模型是我们与苏黎世联邦理工学院机械与工艺工程系力学中心合作开发RAMMSrockfall模型采用刚体力学,可以明确描述任意三维多面体,包括自然岩石形状(请参见下图)。将真实的岩石形状引入落石模型可以更好地包含由不同地质环境产生的岩石形状和大小的自然变异性。借助此方法,我们可以更接近地模拟落石跳动行为的真实本质,将岩石形状和特定地点落石危险的释放运动学特征相结合。



ROCK图.png


Fuchslaui_RAMMS.gif


Download RAMMS_ROCKFALL Factsheet (pdf)!

rockfallpdf.jpg



Download RAMMS_ROCKFALL Manual (pdf)!

rockma.png


RAMMS软件必须申请激活码才可以试用2周时长

需要您下载以上相关安装程序文件,将其解压缩到一个临时文件夹中,然后启动解压缩的安装文件。
生成许可证请求文件,并将其附加到《RAMMS激活申请表》RAMMS模块可以作为一个软件包安装在一台PC上,也可以作为独立模块安装在不同PC上(RAMMS :: Rockfall只能作为独立模块安装!)。
请参阅上面的用户手册,以获取有关RAMMS安装的更多信息。
ramms软件试用激活申请表
姓名
*
单位
*
电话
*
邮箱
*
选择模块
许可请求文件
未选择文件
文件大小不超过1M
*
验证码
 换一张
*
提交
在线咨询
 
 
 工作时间
周一至周五 :9:00-17:00
 联系方式
热线:010-51032186          13241132576
邮箱:info@rockandsoil.cn     grockandsoil@126.com
微信服务号:grockandsoil